Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
  • Ask a Question
  • Create a Poll
300
Insert Image Size must be less than < 5MB.
    Ask a Question
    Cancel
    300
    More answer You can create 5 answer(s).
      Ask a Poll
      Cancel

      What will be the maximum deflection angle through which a sonic flow can be expanded?

      Calculate the maximum deflection angle through which a sonic flow can be expanded via a centered expansion wave.

      1 Answers

      The maximum expansion corresponds to {M_2} \to \infty .We need to obtain Prandtl-Meyer expansion function  v\left( M \right).

      \nu \left( M \right) = \sqrt {\frac{{\gamma + 1}}{{\gamma – 1}}} {\tan ^{ – 1}}\sqrt {\frac{{\gamma – 1}}{{\gamma + 1}}\left( {{M^2} – 1} \right)} – {\tan ^{ – 1}}\sqrt {{M^2} – 1}

      So

      \begin{array}{l}\mathop {\lim }\limits_{{M_2} \to \infty } \nu \left( {{M_2}} \right) = \mathop {\lim }\limits_{{M_2} \to \infty } \left\{ {\sqrt {\frac{{\gamma + 1}}{{\gamma – 1}}} {{\tan }^{ – 1}}\sqrt {\frac{{\gamma – 1}}{{\gamma + 1}}\left( {M_2^2 – 1} \right)} – {{\tan }^{ – 1}}\sqrt {M_2^2 – 1} } \right\}\\ = \sqrt {\frac{{\gamma + 1}}{{\gamma – 1}}} \times \frac{\pi }{2} – \frac{\pi }{2} – {\left( {\sqrt {\frac{{\gamma + 1}}{{\gamma – 1}}} – 1} \right)^{\frac{\pi }{2}}}\\ = 2.277\,{\rm{radians}}\\ = {130.45^ \circ }\end{array}

      We need to  obtain v\left( M \right) for M1 =1

      \begin{array}{l}{\nu _1} = 0,\\{\rm{therefore}}\,{\theta _{\max }} = {\nu _2} – {\nu _1}\\ = 134.45 – 0\\ = {130.45^ \circ }\end{array}

      Hence maximum deflection angle is {{{130.45}^ \circ }}.

      Answered by techAir on 4th July 2019..

      Aero Tool