Maximum lift to drag ratio decreases as the Mach number increases. How to mitigate the effect of  decrease in maximum  lift to drag ratio when there is increase in Mach number.

How to mitigate the effect of  decrease in maximum  lift to drag ratio when there is increase in Mach number.

Add Comment
  • 1 Answer(s)

    Maximum lift to drag ratio is given as

    \[\begin{array}{l}{(\frac{{{c_l}}}{{{c_d}}})_{\max }} = {({c_f})^{\frac{{ – 1}}{2}}}{({M^2} – 1)^{\frac{{ – 1}}{4}}}\\ = \frac{1}{{\sqrt {{c_f}} {{({M^2} – 1)}^{\frac{{ – 1}}{4}}}}}\end{array}\]

    From the above equation we can conclude that maximum lift to drag decreases as Mach number increases. As the designers always want a higher aerodynamic efficient airplanes means a higher (L/D) ratio, at higher Mach number this can lead to decrease in aerodynamic efficiency.

    We have a total drag coefficients for the supersonic airfoil as sum of skin friction drag, cand wave drag cd. The skin friction accounts for a larger cause of drag than the wave drag. Skin friction greatly diminishes lift to drag ratio of the airfoil, so the airplane designers try to reduce the skin friction drag,by encouraging laminar rather than turbulent boundary layer on the airfoil.

     

    techAir Answered on 3rd July 2019.
    Add Comment
  • Your Answer

    By posting your answer, you agree to the privacy policy and terms of service.