For a velocity field of incompressible flow given by u=4x and v=–4y, calculate the stream function and velocity potential.
For a velocity field of incompressible flow given by \(u = 4x\) and \(v = – 4y\), calculate the stream function and velocity potential.Show that lines of constant \(\phi \) are perpendicular to lines of constant \(\psi \).
\(u = 4x = \frac{{\partial \psi }}{{\partial y}}\)
\( \Rightarrow \partial \psi = 4x\partial y\)
\( \Rightarrow \int {\partial \psi = \int {4x\partial y} } \)
\( \Rightarrow \psi = 4xy + f\left( x \right)\)
\(v = – 4y\) = -\(\frac{{ \partial \psi }}{{\partial x}}\)
\( \Rightarrow \frac{{\partial \psi }}{{\partial x}} = 4y\)
\( \Rightarrow \partial \psi = 4y\partial x\)
\( \Rightarrow \int {\partial \psi = \int {4y\partial x} } \)
\( \Rightarrow \psi = 4xy + f\left( y \right)\)
On comparing these two equations for \(\psi \), stream functions is \(\psi = 4xy + {\rm{constant}}\).
Also \(u = 4x = \frac{{\partial \phi }}{{\partial x}}\)
\( \Rightarrow 4x\partial x = \partial \phi \)
\( \Rightarrow \int {\partial \phi = \int {4x\partial x} } \)
\( \Rightarrow \phi = 4{x^2} + f\left( y \right)\)
\(v = – 4y = \frac{{\partial \phi }}{{\partial y}}\)
\( \Rightarrow \frac{{\partial \phi }}{{\partial y}} = – 4y\)
\( \Rightarrow \int {\partial \phi = \int { – 4y\partial y} } \)
\( \Rightarrow \phi = – 4{y^2} + f\left( x \right)\)
On comparing the above two equations, \(f\left( y \right) = – 4{y^2}\) and \(f(x) = 4{x^2}\), velocity potential is \(\phi = 4\left( {{x^2} – {y^2}} \right)\).
Now
\(\psi = 4xy + {\rm{constant}}\), differentiating with respect to x, holding \(\psi = {\rm{constant}}\)
\(0 = 4x\frac{{dy}}{{dx}} + 4y\)
\( \Rightarrow {\left( {\frac{{dy}}{{dx}}} \right)_{\psi = {\rm{constant}}}} = – \frac{y}{x}\)
Differentiating \(\phi = 4\left( {{x^2} – {y^2}} \right)\) with respect to x, holding \(\phi = {\rm{constant}}\)
\(0 = 2 \times 4x – 2 \times 4 \times y\frac{{dy}}{{dx}}\)
\( \Rightarrow {\left( {\frac{{dy}}{{dx}}} \right)_{\phi = {\rm{constant}}}} = \frac{x}{y}\)
On comparing the above, we get \[{\left( {\frac{{dy}}{{dx}}} \right)_{\psi = {\rm{constant}}}} = – {\frac{1}{{\left( {\frac{{dy}}{{dx}}} \right)}}_{\phi = {\rm{constant}}}}\]This shows that lines of constant \(\phi \) are perpendicular to lines of constant \(\psi \) .