RE: Find the lift and wave drag coefficients for an infinitely thin flat plate.

Find the lift and wave drag coefficients for an infinitely thin flat plate at an angle of attack of 8^{\circ} in a Mach 3 flow.

Kumar59 Asked on 26th March 2021 in Aeronautics.
Add Comment
1 Answers

Supersonic flow over a thin flat plate at an angle of attackSupersonic flow over a thin flat plate at an angle of attack

From the \theta -\beta -M relationship, for \theta = 8^{\circ} and M = 3, \beta =25.611^{\circ}
Therefore,
M_{n1}=M_{1}Sin\beta =3Sin\left ( 25.611^{\circ} \right )=1.297
From normal shock properties, for M_{n1}=1.297, \frac{p_{3}}{p_{1}}=1.796
From isentropic flow properties, for M_{1}=3, \left ( \frac{p_{1}}{p_{01}} \right )=0.02722
From prandtl-Meyer function for M_{1}=3, \nu _{1}=49.76
Therefore, \nu _{2}=\nu _{1}+\theta =49.76^{\circ}+8^{\circ}=57.76^{\circ}
For, \nu _{2}=57.76^{\circ}, M_{2}=3.452

For, M_{2}=3.452, from isentropic flow properties
\left ( \frac{p_{2}}{p_{02}} \right )=0.01404

Therefore,
\frac{p_{2}}{p_{1}}=\left ( \frac{p_{2}}{p_{02}} \right ) \left ( \frac{p_{02}}{p_{01}} \right )\left ( \frac{p_{01}}{p_{1}} \right )=\left ( 0.01404 \right ) \left ( 1 \right )\left ( \frac{1}{0.02722} \right )=0.5158

Total pressure is constant through the expansion wave, p_{02}=p_{01}.
For, a thin flat plate lift per unit span is L{}’=\left ( p_{3}-p_{2} \right )\left ( c \right )cos\alpha

also, c_{l}=\frac{L{}’}{q_{1}S} =\frac{L{}’}{\frac{\gamma }{2}p_{1}M_{1}^{2}c} =\frac{\left ( p_{3}-p_{2} \right )\left ( c \right ) cos\alpha }{\frac{\gamma }{2}p_{1}M_{1}^{2}c} =\frac{2}{\gamma M_{1}^{2}}\left ( \frac{p_{3}}{p_{1}}-\frac{p_{2}}{p_{1}} \right )cos\alpha
\Rightarrow c_{l}=\frac{2}{\left ( 1.4 \right )\left ( 3^{2} \right )}\left ( 1.796-0.5158 \right )cos\left ( 8^{\circ} \right )=0.20123

For a thin flat plate, drag per unit span is D{}’=\left ( p_{3}-p_{2} \right )\left ( c \right )sin\alpha
also,
c_{d}=\frac{D{}’}{q_{1}S}=\frac{D{}’}{\frac{\gamma }{2}p_{1}M_{1}^{2}c} =\frac{\left ( p_{3}-p_{2} \right )\left ( c \right ) sin\alpha }{\frac{\gamma }{2}p_{1}M_{1}^{2}c} =\frac{2}{\gamma M_{1}^{2}} \left ( \frac{p_{3}}{p_{1}}-\frac{p_{2}}{p_{1}} \right )sin\alpha
\Rightarrow c_{d}=\frac{2}{\left ( 1.4 \right )\left ( 3^{2} \right )}\left ( 1.796-0.5158 \right )sin\left ( 8^{\circ} \right )=0.02828

Kisan Kumar Answered on 8th April 2021.
Add Comment

Your Answer

By posting your answer, you agree to the privacy policy and terms of service.