Worldtech's Profile

513
Points

Questions
117

Answers
70

  • Asked on 3rd January 2019 in Fluid dynamics.

    On changing the equation to polar co-ordinates \begin{array}{l}x = r\cos \theta \\y = r\sin \theta \\{V_r} = u\cos \theta  + v\sin \theta \\{V_\theta } =  – u\sin \theta  + v\cos \theta \end{array}\begin{array}{l}u = \frac{{4y}}{{({x^2} + {y^2})}} = \frac{{4r\sin \theta }}{{{r^2}}} = \frac{{4\sin \theta }}{r}\\v = \frac{{ – 4x}}{{({x^2} + {y^2})}} = \frac{{4r\cos \theta }}{{{r^2}}} = \frac{{ – 4\cos \theta }}{r}\\{V_r} = \frac{4}{r}\cos \theta \sin \theta  – \frac{4}{r}\cos \theta \sin \theta  = 0\\{V_\theta } = \frac{{ – 4}}{r}{\sin ^2}\theta  – \frac{4}{r}{\cos ^2}\theta  = \frac{{ – 4}}{r}\end{array}

    Time rate of change of volume of a fluid element per unit volume is given as\begin{array}{l}\nabla .\mathop V\limits^ \to   = \frac{1}{r}\frac{{\partial r{V_r}}}{{\partial r}} + \frac{1}{r}\frac{{\partial {V_\theta }}}{{\partial \theta }}\\\nabla .\mathop V\limits^ \to   = \frac{1}{r}\frac{{\partial (0)}}{{\partial r}} + \frac{1}{r}\frac{{\partial \left( { – c/r} \right)}}{{\partial \theta }} = 0 + 0 = 0\end{array} (b) Vorticity = \begin{array}{l}\nabla  \times \mathop V\limits^ \to   = {e_z}\left[ {\frac{{\partial \left( { – c/r} \right)}}{{\partial r}} – \frac{c}{{{r^2}}} – \frac{1}{r}\frac{{\partial \left( 0 \right)}}{{\partial \theta }}} \right]\\ = {e_z}\left[ {\frac{c}{{{r^2}}} – \frac{c}{{{r^2}}} – 0} \right]\\ = 0\end{array}\nabla  \times \mathop V\limits^ \to   = 0 except at origin, since it is singular at origin.

    • 1663 views
    • 1 answers
    • 0 votes
  • Asked on 2nd January 2019 in Aerodynamics.

    Let x = r\cos \theta ,\,y = r\sin \theta , therefore {x^2} + {y^2} = {r^2}. In polar- coordinates {V_r} = u\cos \theta  + v\sin \theta and {V_\theta } =  – u\sin \theta  + v\cos \theta

    Hence, 

    u = \frac{{5y}}{{{x^2} + {y^2}}} = \frac{{5r\sin \theta }}{{{r^2}}} = \frac{{5\sin \theta }}{r} ,  v =  – \frac{{5x}}{{{x^2} + {y^2}}} =  – \frac{{5r\cos \theta }}{{{r^2}}} =  – \frac{{5\cos \theta }}{r}


    {V_r} = \frac{{5\sin \theta }}{r}\left( {\cos \theta } \right) + \left( { – \frac{{5\cos \theta }}{r}} \right)\sin \theta  = 0{V_\theta } =  – \frac{{5\sin \theta }}{r}\sin \theta  + \left( { – \frac{{5\cos \theta }}{r}} \right)\cos \theta  =  – \frac{5}{r}


    V.ds = \left( {{V_r}{e_r} + {V_\theta }{e_\theta }} \right).\left( {dr{e_r} + rd\theta {e_\theta }} \right) = \left( {{V_r}dr + r{V_\theta }d\theta } \right) = 0 + r\left( { – \frac{5}{r}} \right)d\theta =  – 5d\theta


    Therefore, \tau  =  – \oint_c {V.ds}  =  – \int\limits_0^{2\pi } { – 5d\theta }  = 5\int\limits_0^{2\pi } {d\theta } = 5 \times 2\pi \ = \,10\,{m^2}/s.

    Here, value of circulation, is independent of diameter of circular path.

    • 2089 views
    • 1 answers
    • 0 votes
  • Asked on 2nd January 2019 in Aerodynamics.

    Location of center of pressure is given as {x_{cp}} = \left( {\frac{c}{4}} \right) – \frac{{M_{c/4}^\prime }}{{{L^{^\prime }}}}

    Where{x_{cp}}  is the distance of center of pressure from the leading edge of airfoil, and ‘c’ is the chord length .M_{c/4}^\prime is moment per unit span about quarter-chord point and {L^\prime } is the lift per unit span;\begin{array}{l}{x_{cp}} = \frac{c}{4} – \frac{{M_{c/4}^\prime }}{{{L^\prime }}}\\\frac{{{x_{cp}}}}{c} = \frac{1}{4} – \frac{{\left( {M_{c/4}^\prime /{q_\infty }{c^2}} \right)}}{{\left( {{L^\prime }/{q_\infty }c} \right)}}\end{array}\begin{array}{l} = \frac{1}{4} – \left( {\frac{{{c_{m,c/4}}}}{{{c_l}}}} \right)\\ = \frac{1}{4} – \left( {\frac{{ – 0.08}}{{0.80}}} \right)\\ = \frac{1}{4} + 0.1\\ = 0.25 + 0.1\\ = 0.35\end{array}Therefore, location of center of pressure is at 0.35 with respect to chord length.

    • 1434 views
    • 1 answers
    • 0 votes
  • Asked on 1st January 2019 in Aerodynamics.

    pressure coefficient is given as   {C_p} = 1 – {\left( {\frac{v}{{{v_\infty }}}} \right)^2} = 1 – {\left( {\frac{{220}}{{100}}} \right)^2} = 1 – 4.84 =  – 3.84

    • 1113 views
    • 1 answers
    • 0 votes
  • Asked on 1st January 2019 in Aerodynamics.

    (a) For inviscid and incompressible flow coefficient of pressure is given as {C_p} = 1 – {\left( {\frac{v}{{{v_\infty }}}} \right)^2}v = \sqrt {v_\infty ^2\left( {1 – {C_p}} \right)} = \sqrt {{{\left( {50} \right)}^2}\left( {1 – \left( { – 3.84} \right)} \right)} = \sqrt {2500\left( {1 + 3.84} \right)} = 110\,{\rm{ft/sec}}also (b) for {{v_\infty }} = 200 ft/sec {C_p} = 1 – {\left( {\frac{v}{{{v_\infty }}}} \right)^2}v = \sqrt {v_\infty ^2\left( {1 – {C_p}} \right)} = \sqrt {{{\left( {200} \right)}^2}\left( {1 – \left( { – 3.84} \right)} \right)} = \sqrt {40000\left( {1 + 3.84} \right)} = 440\,{\rm{ft/sec}}

    • 1337 views
    • 1 answers
    • 0 votes
  • Asked on 1st January 2019 in Aerodynamics.

    Considering the flow to be inviscid and incompressible, Pressure coefficient {{\rm{C}}_{\rm{p}}} = 1 – {\left( {\frac{v}{{{v_\infty }}}} \right)^2} = 1 – {\left( {\frac{{150}}{{100}}} \right)^2} =  – 1.25

    • 1097 views
    • 1 answers
    • 0 votes
  • Asked on 31st December 2018 in Aerodynamics.

    For a uniform flow velocity potential \phi  = {V_\infty }x\frac{{\partial \phi }}{{\partial x}} = {V_\infty },\frac{{{\partial ^2}\phi }}{{\partial {x^2}}} = 0\frac{{\partial \phi }}{{\partial y}} = 0\,;\,\frac{{{\partial ^2}\phi }}{{\partial {y^2}}} = 0Laplace’s equation\frac{{{\partial ^2}\phi }}{{\partial {x^2}}} + \frac{{{\partial ^2}\phi }}{{\partial {y^2}}} = 0 + 0 = 0is satisfied. For a uniform flow stream function \psi  = Vy\,;\frac{{\partial \psi }}{{\partial x}} = 0\,,\,\frac{{{\partial ^2}\psi }}{{\partial {x^2}}} = 0\frac{{\partial \psi }}{{\partial y}} = V,\frac{{{\partial ^2}\psi }}{{\partial {y^2}}} = 0Therefore, Laplace’s equation =\frac{{{\partial ^2}\psi }}{{\partial {x^2}}} + \frac{{{\partial ^2}\psi }}{{\partial {y^2}}} = 0 + 0 = 0is satisfied.

    For a source flow , velocity potential \phi  = \frac{\Lambda }{{2\pi }}\ln r\frac{{\partial \phi }}{{\partial r}} = \frac{\Lambda }{{2\pi }}\frac{1}{r}\,,\,\frac{{{\partial ^2}\phi }}{{\partial {r^2}}} =  – \frac{\Lambda }{{2\pi }}\frac{1}{{{r^2}}}\frac{{\partial \phi }}{{\partial \theta }} = 0\,,\,\frac{{{\partial ^2}\phi }}{{\partial {\theta ^2}}} = 0Laplace’s equation =  = \frac{1}{r} \cdot \frac{\partial }{{\partial r}}\left( {r\frac{{\partial \phi }}{{\partial r}}} \right) + \frac{1}{{{r^2}}} + \frac{1}{{{r^2}}}\frac{{{\partial ^2}\phi }}{{\partial {\theta ^2}}} = \frac{1}{r}\frac{\partial }{{\partial r}}\left[ {\frac{\Lambda }{{\partial \pi }}} \right] + 0 = 0is satisfied.For a source flow stream function \psi  = \frac{\Lambda }{2} = \theta \,;\,\frac{{\partial \psi }}{{\partial r}} = 0\,,\,\frac{{{\partial ^2}\psi }}{{\partial {r^2}}} = 0\frac{{\partial \psi }}{{\partial \theta }} = \frac{\Lambda }{{2\pi }}\,,\,\frac{{{\partial ^2}\psi }}{{\partial {\phi ^2}}}\, = \,0Therefore , Laplace’s equation \frac{1}{r}\frac{\partial }{{\partial r}}\left( {r\frac{{\partial \psi }}{{\partial r}}} \right) + \frac{1}{{{r^2}}}\frac{{{\partial ^2}\psi }}{{\partial {\theta ^2}}} = \frac{1}{r}\frac{\partial }{{\partial r}}\left( 0 \right) + \frac{1}{{{r^2}}}\left( 0 \right) = 0is satisfied.

    • 2601 views
    • 1 answers
    • 0 votes
  • For a uniform flow {V_\infty } = u = {\rm{constant}}\,\,{\rm{;}}\,\,\mathop V\limits^ \to   = {V_\infty }\mathop i\limits^ \to  Divergence of velocity field\nabla  \cdot \mathop V\limits^ \to   = \frac{{\partial u}}{{\partial x}} + \frac{{\partial v}}{{\partial y}} + \frac{{\partial w}}{{\partial z}} = 0 + 0 + 0 = 0Therefore, it shows that it is a physically possible incompressible flow.

    Also, curl of velocity field \nabla  \times \mathop V\limits^ \to   = \left| {\begin{array}{*{20}{c}}{\mathop i\limits^ \to  }&{\mathop j\limits^ \to  }&{\mathop k\limits^ \to  }\\{\frac{\partial }{{\partial x}}}&{\frac{\partial }{{\partial y}}}&{\frac{\partial }{{\partial z}}}\\u&v&w\end{array}} \right| = \mathop i\limits^ \to  \left( {0 – 0} \right) – \mathop j\limits^ \to  \left( {0 – \frac{{\partial u}}{{\partial x}}} \right) + \mathop k\limits^ \to  \left( {0 – \frac{{\partial u}}{{\partial y}}} \right)\nabla  \times \mathop V\limits^ \to   = 0This shows that the flow is irrotational.

    • 1552 views
    • 1 answers
    • 0 votes
  • For a source flow, velocity \mathop V\limits^ \to   = {V_r}\mathop {{e_r}}\limits^ \to   = \frac{\Lambda }{{2\pi r}}\mathop {{e_r}}\limits^ \to  In polar co-ordinates :, the curl of velocity field will be \nabla  \cdot \mathop V\limits^ \to   = \frac{1}{r}\frac{\partial }{{\partial r}}\left( {r{V_r}} \right) + \frac{1}{r}\frac{{\partial {V_\theta }}}{{\partial \theta }}\nabla  \cdot \mathop V\limits^ \to   = \frac{1}{r}\frac{\partial }{{\partial r}}\left[ {r\frac{\Lambda }{{2\pi r}}} \right] + \frac{1}{r}\frac{{\partial \left( 0 \right)}}{{\partial \theta }}\nabla  \cdot \mathop V\limits^ \to   = \frac{1}{r}\frac{\partial }{{\partial r}}\left( {\frac{\Lambda }{{2\pi }}} \right) + 0 = 0Therefore, the flow is a physically possible incompressible flow, except at origin where r =0.

    Also,\nabla  \times \mathop V\limits^ \to   = \frac{1}{r}\left| {\begin{array}{*{20}{c}}{\mathop {{e_r}}\limits^ \to  }&{r\mathop {{e_\theta }}\limits^ \to  }&{\mathop {{e_z}}\limits^ \to  }\\{\frac{\partial }{{\partial r}}}&{\frac{\partial }{{\partial \theta }}}&{\frac{\partial }{{\partial z}}}\\{{V_r}}&{r{V_\theta }}&{{V_z}}\end{array}} \right| = \frac{1}{r}\left| {\begin{array}{*{20}{c}}{\mathop {{e_r}}\limits^ \to  }&{r\mathop {{e_\theta }}\limits^ \to  }&{\mathop {{e_z}}\limits^ \to  }\\{\frac{\partial }{{\partial r}}}&{\frac{\partial }{{\partial \theta }}}&{\frac{\partial }{{\partial z}}}\\{\frac{\Lambda }{{2\pi r}}}&0&0\end{array}} \right|\nabla  \times \mathop V\limits^ \to   =  – r\mathop {{e_\theta }}\limits^ \to  \left( {\frac{{\partial 0}}{{\partial r}} – \frac{{\partial \Lambda /2\pi r}}{{\partial z}}} \right) + \mathop {{e_z}}\limits^ \to  \left( {\frac{{\partial 0}}{{\partial r}} – \frac{{\partial \Lambda /2\pi r}}{{\partial \theta }}} \right) = 0Therefore, \nabla  \times \mathop V\limits^ \to   = 0 (everywhere in the flow).

    • 1689 views
    • 1 answers
    • 0 votes
  • Asked on 28th December 2018 in Aerodynamics.

    Lift per unit span is given as {L^\prime} = {\rho _\infty }{V_\infty }\tau \tau  = \frac{{{L^\prime}}}{{{\rho _\infty }{V_\infty }}} = \frac{8}{{\left( {1.23} \right)\left( {50} \right)}} = 0.13\,{m^2}/s   

    • 1389 views
    • 1 answers
    • 0 votes