For vortex flow, calculate: (a). The time rate of change of the volume of a fluid element per unit volume. (b). The vorticity.
For vortex flow, calculate:
a. The time rate of change of the volume of a fluid element per unit volume.
b. The vorticity.
a) Let for a vortex flow \(u=\frac{cy}{x^{2}+y^{2}}\) and \(v=\frac{-cx}{x^{2}+y^{2}}\).In polar coordinates the time rate of change of a fluid element per unit volume is given as \[\nabla\cdot \vec{V}=\frac{1}{r}\frac{\partial }{\partial r}\left ( rV_{r} \right )+\frac{1}{r}\frac{\partial V_{\theta}}{\partial \theta}\]
The velocity component is transformed by using \(x=rcos\theta\) and \(y=rsin\theta\).
\[V_{r}=ucos\theta+vsin\theta
\\V_{\theta}=-usin\theta+vcos\theta\]
\[u=\frac{cy}{x^{2}+y^{2}}=\frac{crsin\theta}{r^{2}}=\frac{c sin\theta}{r}
\\v=\frac{-cx}{x^{2}+y^{2}}=\frac{crcos\theta}{r^{2}}=\frac{-c cos\theta}{r}
\\V_{r}=\frac{c}{r}cos\theta sin\theta-\frac{c}{r}cos\theta sin\theta=0
\\V_{\theta}=\frac{-c}{r}sin^{2}\theta-\frac{c}{r}cos^{2}\theta=\frac{-c}{r}\]
\[\nabla\cdot \vec{V}=\frac{1}{r}\frac{\partial }{\partial r}\left ( 0 \right )+\frac{1}{r}\frac{\partial }{\partial \theta}\left ( \frac{-c}{r} \right )=0+0=0\]
b) The vorticity
Vorticity is given as \[\nabla \times \vec{V}=\vec{e_{z}}\left [ \frac{\partial }{\partial r}\left ( \frac{-c}{r} \right )-\frac{c}{r^{2}}-\frac{1}{r}\frac{\partial (0)}{\partial \theta} \right ]
\\=\vec{e_{z}}\left [ \frac{c}{r^{2}}-\frac{c}{r^{2}} -0\right ]
\\=0\]
Here \(\nabla \times \vec{V}=0\) except at origin, where r=0.The flow field is singular at the origin.