The x and y components of a velocity field are given as u=4x/(x^2+y^2) and v=4y/(x^2+y^2), what is the equation of streamlines.
x and y components of a velocity field are given as u = \frac{{4x}}{{\left( {{x^2} + {y^2}} \right)}} and v = \frac{{4y}}{{\left( {{x^2} + {y^2}} \right)}}, what is the equation of streamlines.
Equation of streamline is given as
\left( {\frac{{dy}}{{dx}}} \right) = \left( {\frac{v}{u}} \right) therefore,
\left( {\frac{{dy}}{{dx}}} \right) = \frac{{\frac{{4y}}{{\left( {{x^2} + {y^2}} \right)}}}}{{\frac{{4x}}{{\left( {{x^2} + {y^2}} \right)}}}}
\left( {\frac{{dy}}{{dx}}} \right) = \frac{{4y}}{{\left( {{x^2} + {y^2}} \right)}} \times \frac{{\left( {{x^2} + {y^2}} \right)}}{{4x}}
= \left( {\frac{y}{x}} \right)
\frac{{dy}}{{dx}} = \frac{y}{x}
\frac{{dy}}{y} = \frac{{dx}}{x}
\ln y = \ln x + c
\ln y – \ln x = c
\ln \left( {\frac{y}{x}} \right) = \ln c
\frac{y}{x} = \ln c
y = {c_1}x
The streamlines are straight lines from a source.