The x and y components of a velocity field are given by u = 5y/(x^2 + y^2) and v = (-5x/(x^2 + y^2). Calculate the circulation around a circular path of radius 3m. Let the units of u and v be in m/s.

Consider a velocity field where x and y components of velocity are u = 5y/\left( {{x^2} + {y^2}} \right) and v =  – 5x/\left( {{x^2} + {y^2}} \right). Calculate circulation around a circular path of radius 3m . Let the units of u  and v be in m/s.

techAir Asked on 2nd January 2019 in Aerodynamics.
Add Comment
  • 1 Answer(s)

    Let x = r\cos \theta ,\,y = r\sin \theta , therefore {x^2} + {y^2} = {r^2}. In polar- coordinates {V_r} = u\cos \theta  + v\sin \theta and {V_\theta } =  – u\sin \theta  + v\cos \theta

    Hence, 

    u = \frac{{5y}}{{{x^2} + {y^2}}} = \frac{{5r\sin \theta }}{{{r^2}}} = \frac{{5\sin \theta }}{r} ,  v =  – \frac{{5x}}{{{x^2} + {y^2}}} =  – \frac{{5r\cos \theta }}{{{r^2}}} =  – \frac{{5\cos \theta }}{r}


    {V_r} = \frac{{5\sin \theta }}{r}\left( {\cos \theta } \right) + \left( { – \frac{{5\cos \theta }}{r}} \right)\sin \theta  = 0{V_\theta } =  – \frac{{5\sin \theta }}{r}\sin \theta  + \left( { – \frac{{5\cos \theta }}{r}} \right)\cos \theta  =  – \frac{5}{r}


    V.ds = \left( {{V_r}{e_r} + {V_\theta }{e_\theta }} \right).\left( {dr{e_r} + rd\theta {e_\theta }} \right) = \left( {{V_r}dr + r{V_\theta }d\theta } \right) = 0 + r\left( { – \frac{5}{r}} \right)d\theta =  – 5d\theta


    Therefore, \tau  =  – \oint_c {V.ds}  =  – \int\limits_0^{2\pi } { – 5d\theta }  = 5\int\limits_0^{2\pi } {d\theta } = 5 \times 2\pi \ = \,10\,{m^2}/s.

    Here, value of circulation, is independent of diameter of circular path.

    Worldtech Answered on 2nd January 2019.
    Add Comment
  • Your Answer

    By posting your answer, you agree to the privacy policy and terms of service.