The x and y components of a velocity field are given by u = 5y/(x^2 + y^2) and v = (-5x/(x^2 + y^2). Calculate the circulation around a circular path of radius 3m. Let the units of u and v be in m/s.

Consider a velocity field where x and y components of velocity are \(u = 5y/\left( {{x^2} + {y^2}} \right)\) and \(v =  – 5x/\left( {{x^2} + {y^2}} \right)\). Calculate circulation around a circular path of radius \(3m\) . Let the units of \(u\)  and \(v\) be in \(m/s\).

techAir Asked on 2nd January 2019 in Aerodynamics.
Add Comment
  • 1 Answer(s)

    Let \(x = r\cos \theta ,\,y = r\sin \theta \), therefore \({x^2} + {y^2} = {r^2}\). In polar- coordinates \({V_r} = u\cos \theta  + v\sin \theta \) and \({V_\theta } =  – u\sin \theta  + v\cos \theta \)

    Hence, 

    \(u = \frac{{5y}}{{{x^2} + {y^2}}} = \frac{{5r\sin \theta }}{{{r^2}}} = \frac{{5\sin \theta }}{r}\) ,  \(v =  – \frac{{5x}}{{{x^2} + {y^2}}} =  – \frac{{5r\cos \theta }}{{{r^2}}} =  – \frac{{5\cos \theta }}{r}\)


    \({V_r} = \frac{{5\sin \theta }}{r}\left( {\cos \theta } \right) + \left( { – \frac{{5\cos \theta }}{r}} \right)\sin \theta  = 0\) , \({V_\theta } =  – \frac{{5\sin \theta }}{r}\sin \theta  + \left( { – \frac{{5\cos \theta }}{r}} \right)\cos \theta  =  – \frac{5}{r}\)


    \(V.ds = \left( {{V_r}{e_r} + {V_\theta }{e_\theta }} \right).\left( {dr{e_r} + rd\theta {e_\theta }} \right)\)\( = \left( {{V_r}dr + r{V_\theta }d\theta } \right)\)\( = 0 + r\left( { – \frac{5}{r}} \right)d\theta \)\( =  – 5d\theta \)


    Therefore, \(\tau  =  – \oint_c {V.ds}  =  – \int\limits_0^{2\pi } { – 5d\theta }  = 5\int\limits_0^{2\pi } {d\theta } \)\( = 5 \times 2\pi \ = \,10\,{m^2}/s\).

    Here, value of circulation, is independent of diameter of circular path.

    Worldtech Answered on 2nd January 2019.
    Add Comment
  • Your Answer

    By posting your answer, you agree to the privacy policy and terms of service.