Calculate the stream function and velocity potential.Using your results, show that lines of constant \phi are perpendicular to lines of constant \psi.
Assuming the velocity field given as u = cx and v = −cy, where c is a constant pertains to an incompressible flow, calculate the stream function and velocity potential.Using your results, show that lines of constant \phi are perpendicular to lines of constant \psi.
x and y components of velocity are given by u=cx and v=-cy.We need to calculate the stream function and velocity potential.Here
u=cx \\\frac{\partial \psi }{\partial y}=cx \\\Rightarrow \partial \psi=cx\partial y \\\Rightarrow \psi=cxy+f(x) \\v=-cy=-\frac{\partial \psi}{\partial x} \\\Rightarrow \psi=cxy+f(y)
Here f(x) and f(y) are constants:
\psi=cxy+const. \\u=cx=\frac{d\phi}{dx} \\\Rightarrow d\phi=cxdx \\\Rightarrow \phi=cx^{2}+f(y) \\v=-cy=\frac{\partial \phi}{\partial y}:\phi=-cy^{2}+f(x)
Therefore f(y)=-cy^{2}\;and \;f(x)=cx^{2}
and \phi=c\left ( x^{2}-y^{2} \right ) \\\psi=cxy+const.
Differentiating the above equation of \psi with respect to ‘ x’, holding \psi=constant
\frac{\partial \psi}{\partial x}=cx\frac{dy}{dx}+cy
or \left ( \frac{dy}{dx} \right )_{\psi=constant}=\left ( \frac{-y}{x} \right )
Differentiating the above equation of \phi with respect to ‘x’,holding \phi=constant
0=2cx-2cy\left ( \frac{dy}{dx} \right )
or \left ( \frac{dy}{dx} \right )_{\phi=constant}=\left ( \frac{x}{y} \right )
On comparing the above equations we get \left ( \frac{dy}{dx} \right )_{\psi=constant}=\frac{-1}{\left (\frac{dy}{dx} \right )_{\phi=constant}}
Therefore the lines of constant \phi are perpendicular to the lines of constant \psi.