Consider a uniform flow with velocity V_{∞}. Show that this flow is a physically possible incompressible flow and that it is irrotational.
Consider a uniform flow with velocity V_{∞}. Show that this flow is a physically possible incompressible flow and that it is irrotational.
Let a uniform flow with velocity = V_{\infty}.
\overrightarrow{V}=V_{\infty}\hat{i},V_{\infty}=u=\mathrm{constant}
\nabla \cdot \overrightarrow{V}=\frac{\partial u}{\partial x}+\frac{\partial v }{\partial y}+\frac{\partial w}{\partial z}=0+0+0=0
Therefore the flow is incompressible.
\nabla \times\overrightarrow{V} =\begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k}\\ \frac{\partial }{\partial x} &\frac{\partial }{\partial y} &\frac{\partial }{\partial z} \\ u& v& w \end{vmatrix}
\Rightarrow\overrightarrow{i}\left ( 0-0 \right )-\overrightarrow{j}\left ( 0-0 \right )+\overrightarrow{k}\left ( 0-0 \right ) =0
Therefore
\nabla \times\overrightarrow{V}=0
The flow is irrotational.