Derive the velocity potential for a doublet.

Derive the velocity potential for a doublet.

Worldtech Asked on 4th November 2019 in Aerodynamics.
Add Comment
  • 1 Answer(s)

    For a doublet,the  stream function is \psi=\frac{-k}{2\pi}\frac{\sin\theta}{r}

    V_{r}=\frac{\partial \phi}{\partial r}=\frac{1}{r}\frac{\partial \psi}{\partial \theta}

    Here \psi=\frac{-k}{2\pi}\frac{\sin\theta}{r} \\\Rightarrow \frac{\partial \psi}{\partial \theta}=\frac{-k}{2\pi}\frac{\cos\theta}{r} \\\frac{\partial \phi}{\partial r}=\frac{1}{r}\left ( \frac{-k}{2\pi}\frac{\cos\theta}{r} \right )=\frac{-k}{2\pi}\frac{cos\theta}{r^{2}}

    On integrating with respect to ‘r’

    \phi=\left ( \frac{-k}{2\pi}cos\theta \right )\left ( -\frac{1}{r} \right ) \\\Rightarrow \phi=\frac{k}{2\pi}\frac{\cos\theta}{r}

    techAir Answered on 4th November 2019.
    Add Comment
  • Your Answer

    By posting your answer, you agree to the privacy policy and terms of service.