In a flow field, the velocity components are, u=\left ( 6x^{2}y+t \right ),v=\left ( 3yx+t^{2}+3 \right ) and w=\left ( 3+3t^2y \right ). Find the velocity vector and its magnitude at a point p\left ( 3,2,4 \right ) at t=5 . Units of x,y,z are in meters and time t is in seconds.
In a flow field, the velocity components are, u=\left ( 6x^{2}y+t \right ),v=\left ( 3yx+t^{2}+3 \right ) and w=\left ( 3+3t^2y \right ). Find the velocity vector and its magnitude at a point p\left ( 3,2,4 \right ) at t=5 . Units of x,y,z are in meters and time t is in seconds.
Velocity components are u=\left ( 6x^{2}y+t \right ); v=\left ( 3yx+t^{2}+3 \right ); w=\left ( 3+3t^{2}y \right)
Velocity vector is given as,
\vec{V}=u\hat{i}+v\hat{j}+w\hat{k}At point (3,2,4) and at t=5, velocity components will be,
u=\left ( 6x^{2}y+t \right )=\left ( 6\left ( 3 \right )^{2}2+5 \right )=113v=\left ( 3yx+t^{2}+3 \right )=\left ( \left ( 3\times 2\times 3 \right )+25+3 \right )=\left ( 18+25+3 \right )=46w=\left ( 3+3t^{2}y \right )=\left ( 3+\left ( 3\left ( 5 \right )^{2}2 \right ) \right )=\left ( 3+150 \right )=153
Therefore, velocity vector is,
\vec{V}=113\hat{i}+46\hat{j}+153\hat{k}Velocity magnitude is, V=\sqrt{u^{2}+v^{2}+w^{2}}=\sqrt{113^{2}+46^{2}+153^{2}}=195.69\,m/s