Prove that the velocity potential and the stream function for a source flow, satisfy Laplace’s equation.
Prove that the velocity potential and the stream function for a source flow, satisfy Laplace’s equation.
Velocity potential and stream function for a source flow is given as \(\phi=\frac{\Lambda }{2\pi}ln\;r\) and \(\psi=\frac{\Lambda }{2\pi}\;\theta\).
\[\phi=\frac{\Lambda }{2\pi}ln\;r
\\\frac{\partial \phi}{\partial r}=\frac{\Lambda }{2\pi}\frac{1}{r}\;,\;\frac{\partial^2 \phi}{\partial r^2}=-\frac{\Lambda }{2\pi}\frac{1}{r^{2}}
\\\frac{\partial \phi}{\partial \theta}=0\;;\;\frac{\partial^2 \phi}{\partial \theta^2}=0\]
Therefore Laplace equation \[\frac{1}{r}\frac{\partial }{\partial r}\left ( r\; \frac{\partial \phi}{\partial r} \right )+\frac{1}{r^{2}}\frac{\partial^2 \phi}{\partial \theta^2}=0+0=0\]
is satisfied.
\[\psi=\frac{\Lambda }{2\pi}\theta\]\[\frac{\partial \psi}{\partial r}=0\;;\;\frac{\partial^2 \psi}{\partial r^2}=0
\\\frac{\partial \psi}{\partial \theta}=\frac{\Lambda }{2\pi}\;;\;\frac{\partial^2 \psi}{\partial \theta^2}=0\]
Therefore Laplace equation \[\frac{1}{r}\frac{\partial }{\partial r}\left ( r\;\frac{\partial \psi}{\partial r} \right )+\frac{1}{r^{2}}\frac{\partial^2 \psi}{\partial \theta^2}=\frac{1}{r}\frac{\partial (0)}{\partial r}+\frac{1}{r^{2}}\left ( 0 \right )=0+0=0\]
is satisfied.