Prove that the velocity potential and the stream function for a uniform flow , satisfy Laplace’s equation.
Prove that the velocity potential and the stream function for a uniform flow , satisfy Laplace’s equation.
For a uniform flow velocity potential \phi=V_{\infty}x and stream function \psi=V_{\infty}y.Laplace equation is given as \frac{\partial^2 \phi}{\partial x^2}+\frac{\partial^2 \phi}{\partial y^2}=0\;;\;\frac{\partial^2 \psi}{\partial x^2}+\frac{\partial^2 \psi}{\partial y^2}=0
Velocity potential\phi=V_{\infty}x \\\frac{\partial \phi}{\partial x}=V_{\infty}\;,\;\frac{\partial^2 \phi}{\partial x^2}=0 \\\frac{\partial \phi}{\partial y}=0\;,\;\frac{\partial^2 \phi }{\partial y^2}=0
Therefore Laplace equation \frac{\partial^2 \phi}{\partial x^2}+\frac{\partial^2 \phi}{\partial y^2}=0+0=0
is satisfied.
Stream function \psi=V_{\infty}y
\frac{\partial\psi }{\partial x}=0\;,\;\frac{\partial^2 \psi}{\partial x^2}=0 \\\frac{\partial \psi}{\partial y}=V_{\infty}\;,\;\frac{\partial^2 \psi}{\partial y^2}=0
Therefore Laplace equation \frac{\partial^2 \psi}{\partial x^2}+\frac{\partial^2 \psi}{\partial y^2}=0+0=0
is satisfied.