Write a matlab solution to Rankine nose problem.
Write a matlab solution to Rankine nose problem.
The Rankine nose or Rankine leading edge is an example of flow around the leading edge of a symmetric aerodynamic body which is symmetric about the x-axis of coordinate system.This flow can be obtained by adding a uniform flow and a source flow at the origin.The velocity potential and stream function of this flow is
\phi=U_{\infty}x+\frac{m}{4\pi}ln\left ( x^{2}+y^{2} \right )\;,\;\psi=U_{\infty}y+\frac{m}{2\pi}tan^{-1}\frac{y}{x}
The velocity field for this flow is u=U_{\infty}+\frac{m}{2\pi}\frac{x}{x^{2}+y^{2}}\;;\;v=\frac{m}{2\pi}\frac{y}{x^{2}+y^{2}}
Matlab solution to the problem is
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 | clear;clc disp( 'Example: Rankine nose' ) m = 1; % Source strength for source at (x,y) = (0,0). V = 1; % Free stream velocity in the x-direction disp( ' V m ' ) disp([V m]) disp( ' Velocity potential:' ) disp( ' phi = V*x + (m/4/pi)*log(xˆ2+yˆ2)' ) disp( 'Stream function:' ) disp( ' psi = V*y + (m/2/pi)*atan2(y,x)' ) disp( 'The (x,y) components of velocity (u,v):' ) disp( ' u = V + m/2/pi * xc/(xˆ2+yˆ2)' ) disp( ' v = m/2/pi * y/(xˆ2+yˆ2)' ) % xstg = - m/2/pi/V; ystg = 0; % Location of stagnation point. % N = 1000; xinf = 3; xd = xstg:xinf/N:xinf; for n = 1:length(xd) if n==1 yd(1) = 0; else yd(n) = m/2/V; for it = 1:2000 yd(n) = (m/2/V)*( 1 - 1/pi* atan2 (yd(n),xd(n)) ); end end end xL(1) = xd( end ); yL = -yd( end ); for nn = 2:length(xd)-1 xL(nn) = xd( end -nn); yL(nn) = -yd( end -nn); end plot([xd xL],[yd yL], 'k' ,[-1 3],[0 0], 'k' ),axis([-1 3 -1 1]) u = V + m/2/pi * xd./(xd.^2+yd.^2); v = m/2/pi * yd./(xd.^2+yd.^2); Cp = 1 - (u.^2+v.^2)/V^2; hold on plot(xd,Cp),axis([-1 3 -1 1]) plot(0,m/V/4, 'o' ) plot(xstg,ystg, 'o' ) plot([1 3],[m/2/V m/2/V], '--k' ) [Cpmin, ixd] = min(Cp); xmin = xd(ixd); ymin = yd(ixd); plot(xmin,ymin, '+r' ) Cpmin; % Computation of normal and tangential velocity on (xd,yd): phi = V*xd + (m/4/pi).*log(xd.^2+yd.^2); dx = diff(xd); dy = diff(yd); ds = sqrt(dx.^2 + dy.^2); dph = diff(phi); ut = dph./ds; xm = xd(1: end -1) + dx/2; psi = V*yd + (m/2/pi).* atan2 (yd,xd); plot(xm,1-ut.^2/V^2, 'r' ) % % Check on shape equation % th = 0:pi/25:2*pi; r = (m/2/pi/V)*(pi - th)./sin(th); xb = r.* cos (th); yb = r.*sin(th); plot(xb,yb, 'om' ) % % Exact location of minimum pressure thm = 0; for nit = 1:1000 thm = atan2 (pi-thm,pi-thm-1); end thdegrees = thm*180/pi; rm = (m/2/pi/V)*(pi - thm)/sin(thm); xm = rm* cos (thm); ym = rm*sin(thm); plot(xm,ym, 'dk' ) um = V + m/2/pi * xmin/(xmin^2+ymin^2); vm = m/2/pi * ymin/(xmin^2+ymin^2); Cpm = 1 - (um^2+vm^2)/V^2; |