Show that a source flow is a physically possible incompressible flow everywhere except at the origin. Also show that it is irrotational everywhere.

Show that a source flow is a physically possible incompressible flow everywhere except at the origin. Also show that it is irrotational everywhere.

Worldtech Asked on 2nd November 2019 in Aerodynamics.
Add Comment
  • 1 Answer(s)

    For a source flow ;

    \[\overrightarrow{V}=V_{r}\overrightarrow{e}_{r}=\frac{\Lambda }{2\pi r}\overrightarrow{e_{r}}\]

    In polar coordinates :

    \[\nabla \cdot \overrightarrow{V}=\frac{1}{r}\frac{\partial }{\partial r}\left ( rV_{r} \right )+\frac{1}{r}\frac{\partial V_{\theta}}{\partial \theta}
    \\\Rightarrow\nabla \cdot \overrightarrow{V}=\frac{1}{r}\frac{\partial }{\partial r}\left [ r\;\frac{\Lambda }{2\pi r} \right ]+\frac{1}{r}\frac{\partial(0)}{\partial \theta}
    \\\Rightarrow\nabla \cdot \overrightarrow{V}=0+0=0\]

    This shows that the flow is incompressible.For the flow to be irrotational

    \[\nabla\times \overrightarrow{V}=0\]

    \[\nabla \times \overrightarrow{V}=\frac{1}{r}\begin{vmatrix}
    \overrightarrow{e}_{r} &r\overrightarrow{e}_{\theta} & \overrightarrow{e}_{z}\\
    \frac{\partial }{\partial r}& \frac{\partial }{\partial \theta} & \frac{\partial }{\partial z}\\
    V_{r}& rV_{\theta} & V_{z}
    \end{vmatrix}=\frac{1}{r}\begin{vmatrix}
    \overrightarrow{e}_{r} &r\overrightarrow{e}_{\theta} & \overrightarrow{e}_{z}\\
    \frac{\partial }{\partial r}& \frac{\partial }{\partial \theta} & \frac{\partial }{\partial z}\\
    \frac{\Lambda }{2\pi r}&0 & 0
    \end{vmatrix}\]

    \[\Rightarrow\nabla\times \overrightarrow{V}=-r\overrightarrow{e_{\theta}}\left ( \frac{\partial (0)}{\partial r} -\frac{\partial }{\partial z}\left ( \frac{ \Lambda }{2\pi r} \right )\right )+\overrightarrow{e}_{z}\left ( \frac{\partial (0)}{\partial r} -\frac{\partial }{\partial \theta}\left ( \frac{ \Lambda }{2\pi r} \right ) \right )\]

    \[\Rightarrow\nabla\times \overrightarrow{V}=-r\overrightarrow{e_{\theta}}\left (0-0\right )+\overrightarrow{e}_{z}\left ( 0-0 \right )=0\]

    This shows that it is irrotational everywhere.

     

    techAir Answered on 2nd November 2019.
    Add Comment
  • Your Answer

    By posting your answer, you agree to the privacy policy and terms of service.